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TRANSIENT COOLING OF A HEATED ENCLOSURE
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Abstract—A theoretical examination is made of the transient change in the air temperature inside an
enclosure, in which heat is produced at a uniform rate, following a step-function change in the outside
temperature. The influences of ventilation, internal heat storage, and the thermal properties of the
walls of the enclosure upon the rate of change of inside temperature are compared by numerical
calculation for a few selected cases, It is shown that under certain conditions the ratio (heat stored/
rate of heat loss from the enclosure) in the steady state is the parameter which determines the inside

temperature variation.

NOMENCLATURE

05, inside air temperature, degF ;

8, outside air temperature, degF;

f(x), temperature at position x in wall, degF;

b0, temperature of internal mass, degF;

h;, inside wall surface heat transfer coeffi-
cient, Btu/ft*h degF;

ho, outside wall surface heat transfer coeffi-
cient, Btu/ft*h degF;

hs,  heat transfer coefficient at surface of
internal mass expressed per unit area of
enclosure wall, Btu/fth degF;

¢, thermal capacity of internal mass per
unit area of wall, Btu/ft? degF;
v, ventilation heat loss rate per unit tem-

perature difference and per unit area of
enclosure wall, Btu/ft?h degF;

q, heat input per unit area of wall;

H, conduction heat flux per unit tempera-
ture difference, Btu/ft?h degF;

W, heatstored per unit area of wall, Btu/ft?;

T, thermal time constant, /;

k, thermal conductivity, Btu/ft h degF;

K,  thermal diffusivity, ft2/h;

P, density, 1b/ft?;

s, specific heat, Btu/lb degF;

I thickness of wall, ft;

x, position in wall, ft;

t, time, h;

ap,n=1,2,3, .. ., successive roots of re-

levant function;
{a;)[eo], approximations to a,, a,;
& = x/l;
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T = Ki/l?;

Bi = hi]/k;

By = hollk;

Bs = hillk;

Q = qljk;

V =k,

C = cK/lk;

A =1+ 1/B; + 1/Bo;

B — [B{B: + V))IC(Bs + B; + V)]

Additional nomenclature used in Appendix 1
0,(x), temperature at position x in outer leaf

ez(x),

h,

b,

of cavity wall (0 < x < 1)), degF;
temperature at position x in inner leaf of
cavity wall (/; < x < L), degF;
coefficient of heat transfer across cavity,
Btu/ft?h degF;

thickness of outer leaf, ft;

(l, — L), thickness of inner leaf, ft;

k19
k2a

Kls
K2a
pls
P2»
Sl’
Sa,

R’l.09

thermal conductivity of outer leaf, Btu/ft
h degF;

thermal conductivity of inner leaf, Btu/ft
h degF;

thermal diffusivity of outer leaf, fi2/h;
thermal diffusivity of inner leaf, ft?/h;
density of outer leaf, 1b/ft3;

density of inner leaf, 1b/ft®;

specific heat of outer leaf, Btu/lb degF;
specific heat of inner leaf, Btu/lb degF;
air-to-air thermal resistance of cavity
wall, ft*h degF/Btu;

ao = hor/(Kp/ky;

a

h/(Ky)/ky;
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ay = I (Ky)lky:
a,  hiv(Kylk;
RUx) ~— 1/he =+ xlky (0 o0 v <01, ft2h

degk/Btu:
Ry(x) Iih, idky - L+ ( ik,
(/, == x - [,) ft*h degF/Btu:
by = LIV K
b, (ly - 1Dy K.
INTRODUCTION

THE TRANSIENT flow of heat in a structure as-
sumes a variety of different forms that may have
a practical interest. The present analysis for
example derives from a consideration of the
cooling rate of buildings as it affects the selec-
tion of basic design temperatures for space-
heating installations. The present formulation is
hypothetical; it is intended to be of general
interest without reference to any particular
practical situation.

The rate at which an enclosure responds ther-
mally to a change applied in the ambient
temperature will depend upon the thermal
capacities of the enclosing wall and the interior
mass and, if ventilated, on the rate of air change.
In this paper, exact analytical solutions are ob-
tained and evaluated numerically to demonstrate
the interplay and relative importance of the
various factors for a few selected cases. The ana-
lysis is an improvement on less rigorous methods
used in previously published work which deals
primarily with the application of the problem
to buildings and considers heat transfer in the
external sections only [1, 2, 3].

FORMULATION OF THE PROBLEM

The situation considered in this paper and
illustrated in Fig. 1, is the time-variation of the
air temperature within an enclosure following a
sudden drop from 8, to zero in the ambient
temperature, which is assumed to be uniformly
distributed over the external boundary for all
values of time. In the initial steady state con-
dition, and at all subsequent values of time, heat
is added directly to the air inside the enclosure
at a constant rate g. Heat is lost from the en-
closure by conduction; and further heat is lost
by exchange of inside and outside air, that is by
ventilation, at a constant rate v per unit differ-
ence in air temperature; otherwise the heat
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capacity of the enclosed air 1s assumed to be
negligibly small. The enclosure contains internal
mass, of thermal capacity ¢. whose temperature
is assumed to be uniform throughout for all
{0 and initially equal to that of the internai
air. The quantities ¢, ¢ and r are defined per unit
area of the enclosure wall. For alf values of time
the surfaces of the internal mass at temperature
#i5(1), and both surfaces of the enclosure wall at
temperatures &/, ) (inside surface), and 0, 73
(outside surface), exchange heat with the con-
tiguous air at A, /; and h, times their respecitve
temperature differences per unit area of the wall
and per unit time. The analysis considers the
enclosure walls as a slab of infinite extent
bounded by parallel planes distance /apart. with
constant thermal propertics (conductivity 4
diffusivity K), that is, the conduction heat
transfer 1s assumed to be uni-directional along
the x axis and perpendicular to the surfaces
Under these conditions an expression for the
inside air temperature, 8;(1), is required that satis-
fies the problem formulated mathematically us
follows,
g e
(A f

af( x,
k (, v hob(x, 1), (v =000 () t2)
[ERY
of(x, 1 .
K (\\ S N R RN N AR TR
g - O o Bxo ) - et
hs[Oss(t) - (O], (v = L ) 14
dos(t . ; S
4 (L:I( : /7-%‘[01'8(’\) Hi(f)Ja {r = 0y )

Initially the system is in steady state so that

| (e - kN6 )
B O = 0k T

1ihiy H
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Therefore, by substitution

(1/he + x/k)
(1/ho + Uk + 1/hs)

q
v+ (1ho+ Ik + 1/hi)~"]

(ke + xlk)g
1+ o(1/ho + Ik + kY

O<x<Lt=0. (6
Also 83 = 0;, (t = 0).
Making the substitutions
¢ = x/l, = = Kit/’, B; = hil[k, Bo = hollk,
By = hllk, Q = qlik, C = cKjlk, V = vlk,

equations (1)-(6) are written more conveniently

t(x, 0) = 8, +

:‘9o+

as follows:
29(¢, 7) o0(¢, 7)

i T e 0<E<LT>0 (D)
?9(55 D B, ), (£ =0, 7 >0) (8)
(¢, T
17l (i’g ) = By[fi(r) — 8(¢, 7], (f =1,

>0 (9
Q = Bilbi(r) — (¢, 7] + V()

— Bl — L E =~ 1,7 >0 (10
deg's T
D pfau) — 6L >0 (1)
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0t | 0B,
14+V4 " 14 VA

where 4 = 1 + 1/B; + 1/B,.

The equations in dimensionless form are solved
by a routine application of the Laplace trans-
form. Multiplying (7) through (11) by e~#7 and
integrating with respect to ~ between the limits
0, oo it is found that the function §(¢, p) satisfies
the following transformed differential equation
and boundary conditions,

8(¢, 0) = b, + (12)

&) 0t . 0B,
ae o T PEP T Tt T

10, =0,(00<¢<D(r>0) (13)
PED _ pie e =0.->0 9
PED _ miar) — e ol ¢ =1,

»>{0) (%)

2~ B — K& P + Vi)

— Blfu(p) — O, (€ = 1, =
CPhup) = € (6 + 1 25) — B

P (> 0) (17)

where 8(¢, p) == ‘r e H(¢, 7)dr.
]

>0y (16)

The general solution of (13) subject to (14)
through (17) is

9(§,p):~{80+g(5+1/30)] 1 99(

14+ VA V(p) $(p)

VBiBo

- (Cp + Bs) — — {Bz(Cp

+ B)v/(p) sinh /(p) + [V(Cp + Bs) + CpBil[Bi cosh +/(p) + +/(p) sinh \/(p)}) sinh v/(p¢)

1 8, VB;
RYOL) (v’(p) (©p+ B+

"+ CpB[B: sinh v/(p) + v/(p) cosh /()] }) cosh v/(p)¢

where

$(p) =

{Bi(CF + Bs)v/(p) sinh v/(p) + [V(Cp + By)

(18)

[V(Cp + Bs)(B: + Bo) + CpBy(B: + B,) + BiB,(Cp -+ By)] cosh +/(p) + [(Cp + By)
+ BsCp + CBiBoBs] /(p) sinh v/(p) + V(Cp + Bs) (p — BiB,)(sinh v/p)//p.

(19)
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Equation (18) may be inverted to give the temperature distribution, 6(¢, 7)., within the
enclosure wall: attention however will be confined to calculating a solution for the inside air
temperature 8;(7). From (17)

_ | A ‘ - .
("1‘3([)) = (Cp 7P Bs) ‘C ((’),) : [ !/*4) = B,qH;([))I. 1201
Substituting the expression (20) for Gi(p) nto (16) yields
_ ] O B.C 04 B¢, p)
9:(p) - E— R g — ;o = '
(f’) (B. Ly BSCP, ) 'J’ f Cp B§< £ 1 - VA)‘ (B - B.Cp
Y Cp = B G B
(& Iy (20

Substituting for [A(¢, Ple- | into (21) from (18) leads, after rearrangement, to the result

di(p) % o Bi- CpB(Cp - Bs) Bi By, c 5
Dy vy e cpicp B pay (7B
BV, (Cp -+ B ' ] B; B, R
7B§C/) 'B, cosh v (p) + \‘,(p)-s1nll VI 122)

o (B Ve

The air temperature, 6;(7), is found from its Laplace transform (22) by use of the inversion
theorem and contour integration. Thus
e’ Bi(p)dp. (y = O).

i

ti(7) -

LTTP ).

The transform 6;(p) is seen to be an analytic function of p with a simple pole at the origin of
the p-plane and the other singularities simple poles at points located on the negative real axis.
Carrying out the integration indicated, the solution for the air temperature inside the enclosure is

as follows:
04 O (B - Cal) Vo CBlae

. . R — 2 . e o ; i :Bo iiﬁ“
H((T) 1 vaT 2B7’Bo90/H a%f'.(a”) exp( (L’IT) C (Bz . B_c N V)(B; ) ') B(B B
n i
[(Bi/Bo) cos v/(B) -+ (Bilv/Bysin vBle ¥V
Y VRS T T T R Y ; — DioUg
B[¢(p)],,— 8 (V + B - BS)z C
N (B Calll(By/By) cos i+ (Bife) Sin el exp (- ai) o)
< a2F(an)(B; + Bs + V)a: — B) -
no 1
where
BBy + V) Flag) -2 [qi(p”) [B.C(2B; + 2B, + BiB,) -+ Bi(Bs + 2CB,)

P e B vy
(B + Boa2] cos an - [BiBs[l + Bo(l = C)] - [B«(Bi + By + 3)
- Bi(Bo + 3)]Ca?] (sin ap)/an + VA[Bs + C2Bi -+ 2Bo + BiBo) — Caj - BiBoBs/aj] cos
- [CBiBy 4 B{l -+ B; -+ By) -~ C(Bi +~ By + 32 -+ BiByBs/a2l(sin ap)/oy |

9
Jdn an”

and the summation is taken over the positive roots a,. n 1. 2, 3, etc. of the eigenfunction

CU-J[( Vo Bs)(Bi 43‘7 Bf)) -+ BiBo] o Bsaz[V(Bi + 730) = BiBOJ (74)

caN e TR B V) - A {CBiBAV = BY - BV - B + VBiBoB:
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Numerical evaluation of the exact solution (23) is tedious, largely because of the labour involved
in calculating the zeros of ¢(p) using (24). Except for small values of time, however, the roots
higher than the second are unlikely to contribute significantly to the computed result.

Approximate values of the zeros «2, « may be calculated more easily by expressing #(p) as a
polynomial in p; thus '

BB
40) = BiLBiBs + V(B + By + BiBO) + | B (B + *5° )+ CUBB: + B+ BBy + BiB
B;+ B, BB ‘B; BB
-+ CV(Bi -+ By + BiBo) + VB (1 -+ ~;L,— + ;T)] p+ {Bs (—37 + 7”—")

Bi + Bo BiBo Ba . , Bi “f‘ Bo Ba'Bo)
wc[n (i PR B g (1B o (1 Bt B

1 Bi+B, BB
+ VBs(gg—f-'—La-—E*F'—;-!j)}pz—%—. .. (25)

The polynomial (25) has distinct zeros at p = —a}, —aj, . . .; decomposing ¢(p) into linear
factors and factorizing out the product ofal . ., .the function may be written ¢(p) = ao(l
-+ pla?)(1 + pfa3) . . . where o is a constant which, by putting p = 0 in (25) is recognized as

a = (1 + VA)BiByBs. Writing, therefore, ¢(p) = (1 +- V.A)B;BoBs ﬁ (I 4+ p/a?) the calculation of
the residues now takes the form r=1

1 S exp — (alr)
Lo | = & (26)
{‘f’(l’)} Z(] + VABBB T (1 + pla) . 2

r=1

Ry

where L1 denotes the Laplace inversion and the prime in I’ indicates that the term given by
§ = r is omitted from the product.

For numerical purposes experience suggests that the residues contributed by the infinite
product at r = 1,7 = 2, only need be calculated in the inversion integrand. Assuming therefore
that the zeros of ¢(p) may be determined approximately from (25) as the roots of a quadratic in
p and writing these as [}], [o3] the transform solution 6;(p) may be inverted as indicated in
(26) to give

oy o QA OB — ClalD [l {} L BV(B: — Claf])(eos [ai] + (Bo/la] sin [a))
A ET VAT 0+ VAB([] — [@) B,C(B: + Bs + VB — [«

Bo(Bs — Clod][od] [ BiV(Bs — Clad])(cos [a] + (Bo/[us]) sin [921)1

e L (e 77 ¥( Rt s Rl LA ¥/ 7y e e v
X exp (— [adlr) |
L VB { | 4 BiB: — CBP(B: -+ B: + V) [cos v/(B) + (Bo/ y/B) sin @}
CB(B: + Bs + V) B, BY1 + VAYT — Bl[a3D (1 — BJ[e3)
% exp (— B7). "N

In either form of solution, (23) or (27), the steady state term QA4/(1 + VA) is equivalent to
g/(H -+ v), where H, v denote respective the initial conduction and ventilation rates of heat
loss from the enclosure per unit difference between the inside and outside temperatures.
The first term or constant therefore represents the initial inside temperature excess over the
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outside temperature. Writing this as [6:(0)
solution passes into the more convenient form:

¥,] and substituting into (2

and E. F. BALL

-

7). the approximate

0:(0) — Oi(7) _ (Bs - Clai][a3] | VBi(Bs - Clai(cos [a] 1 {Bo/[ay]) sin o]

h, =B VA6l (4D CBAB; - B, + MYB  [«))

: gy g B Clabledl _ VBAB_ Clogleos lus] + (Bo/{m) sin fus)
e el gyl ) CBAB: ¢ Bt VWA )

VBZ;

wexp (= [ad)r) Cﬁ( B - ‘S; e
S BB CRABL By i V) Leos V) (Buly Bysin vAl| o -
| BB VAL - BT Bl P =

Particular cases follow by taking limiting values
of the parameters; for example putting V' - 0
to correspond with an unventilated enclosure
having internal heat storage. (28) reduces to

0i(0) - i(ry . (Bs - ClaiDlad]exp (- [af]m)
fa B*([ } [aﬂ)
- (39 - [az]}{a“} expl 'v[a%k)
(T (29)

The simplest solution applies to the casc ¢ 0
== 0, when
B:0) - bi(r) (3]
f, [a ] o
[od]

[ei]

@l exp (- - [a]n)

exp (- [aflr). (30)

e

Further examination shows [a}] to be a satis-
factory approximation to «? but the method
yields a poor approximation for the second root.

The results of pumerical calculation given
below indicate that in general [a]] > [«f]; in the
region where |p| is small therefore the first root
[«7] only is required in the inversion and the
solution, for example, for the fractional tem-
perature change inside a sealed enclosure having
no internal heat storage approximates satis-
factorily to the simple decay expression of
familiar form:

8:(0) — 8i()

. (}0 = b exp (- {aﬂ’r'). 35

Assuming further that the single root [a3] in
(31) may be calculated by writing #(p) as a linear
function only in p, it follows that with ¢ -~ 0
and V == 0,

i
fai] = (1B, - 117

It will be clear that the approximste solution
(31) defines the exponential decay in air tem-
perature that follows from representing the
cooling process simply as

d()@('r) s
ar {af]i(r) - O (33)
& ;
From (31), when ~ Vifadl, 4(0) g )
i

] lje so that (1/[al]) is shown to be the value
of r for which the air temperature inside the
unventilated enclosure has fallen by about 63
per cent of the temperature change applied
externally. By analogy with current flow in a
capacitative circuit consisting of a condenser.
capacitance (), discharging through a series
resistance R, [2/K[«3] may be identified as the
thermal time-constant of the cooling system (33).
In current flow the time constant is well known as
the product RC': a similar analogous expression
may be shown to apply in the present approxi-
mate calculation of heat flow. For, relative to &,
as base temperature, the initial heat content per
unit area of the wall of thickness / and volumetric
specific heat ps is given by
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S [9(1, 0) 4; 60,00 90]

or

= = (34)
By substituting from the relation (34) into (31)
it follows that

6:0) . %O | exp = tf(Wlg)). (35)

The expression (35) recognizes the time constant
for the simplified case represented by (33) as the
ratio (heat stored/rate of heat transmission) in
the steady state.

NUMERICAL RESULTS AND DISCUSSION

To illustrate the application of the above solu-
tions, the cooling curves of six enclosures of
different construction have been calculated, for
a ventilation rate, in the first instance, of two air
changes per hour. By repeating the calculations
for zero ventilation the transient response of the
enclosure structure alone is evaluated. Table 1
sets out the various cases considered as 1, la,
2, 2a etc. and Table 2 summarizes the data used
in the numerical calculations.

The structure type is described as heavy or light
according to the weight per unit area of the
external walls. Basically, three different pairs of

Table 1. Reference code of numerical examples

Structure Ventilated Not ventilated
type V+#0 V=20
Heavy, C # 0 1 1a
Heavy, C =0 2 2a
Light, C #0 3 3a
Light, C =0 4 4a
Heavy, C # 0 5 Sa
Heavy, C = 0 6 6a
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Table 2. Data used in numerical examples

Case K/l K/? c v h; he hs
1 0750 0053 192 0398 143 333 143
la 0750 0053 192 - 1-43 333 143
2 0750 0053 -— 0398 143 333 —
2a 0750 0053 - —_ 1-43 333 —
3 0750 0367 192 0398 143 333 143
3a 0750 0367 192 — 143 333 143
4 0750 0367 — 0398 143 333 —
4a 0750 0367 — — 143 333 —
5 0723 0053 734 0210 143 333 143
Sa 0723 0053 734 — 1-43 333 143
6 0723 0053 — 0210 143 333 —
6a 0723 0053 — — 143 333 —

Notes:

(i) The value selected for #4s; implies that the surface
areas of the enclosing wall and the enclosed mass are
equal.

(ii) The values selected for v, being based on a ventilation
rate of two air changes per hour, imply that the ratio
of the enclosed volume to the area of the enclosing
wall takes the following values:

Cases 1, 2, 3, 4--10-48
Cases 5, 6 — 5-53.

enclosure types are considered: 1 and 2; 3 and
4; 5 and 6. Cases 1, 2 and 3, 4 differ only as
regards the weight of the external wall; in all
other respects they are identical. The volume
enclosed in Cases 1-4 is four times that for Cases
5 and 6; the (volume/wall area) ratio is 10-5 for
Cases 14 and 5-5 for Cases 5 and 6. The cases
have been selected and grouped to demonstrate
within each pair the influence of internal heat
storage on the rate of cooling at the ventilation
rates indicated. A comparison between pairs
indicates the influence of the thermal capacity of
the external wall.

It is convenient to calculate the cooling curves
using the solutions as expressed in dimensionless
notation. The curves for cases shown in Figs. 2
and 3 have been calculated using the exact form
of solution and are plotted to show the change
with time in the inside air temperature expressed
as a fraction of the causative drop in the ambient
outside temperature. In Fig. 2 the curves refer
to enclosures ventilated at two air changes per
hour; the corresponding curves for zero ventila-
tion are shown in Fig. 3. A horizontal line drawn
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Schematic representation of temperature
change in a heated enclosure.

through the vertical scale at [0;(0) - 0:(1)}/0,
I - el or 0-63 approximately intersects each
curve at the corresponding value of the thermal
time constant, 7, which is read off along the
time scale. A summary of the time constants
obtained from the curves is given in Table 3.
An indication of the influence of ventilation
on the rate at which an enclosure cools can be
obtained from a comparison of the correspond-
ing curves in Figs. 2 and 3 and, quantitatively,
from the respective values of thermal time con-
stant. In Cases 1 to 4, the time constant of the
sealed enclosure is roughly two to three times
that of an identical one ventilated at two air
changes per hour. For a smaller structure, repre-
sented by Cases 5 and 6, the corresponding
increase is less, being about 50 per cent for the
same air change rate. The curves in Fig. 2

Table 3. Sununary of values of time constant, 1, for all
cases determined by the exact solution
Time constant (h)
Ventilated Not \entlldtcd
Structure Case V-0 Case N
T (h) 1'{hy
Heavy, C + 0 | 225 ta <7
Heavy, C - 0 2 72 24 3
Light, ¢ 0 3 14-5 K 443
Light. ¢ -0 4 1-0 4a 20
Heavy, ¢ -~ 0 3 20:0 Sa 305
Heavy, ¢ 0 6 91 0 137

indicate an instantaneous drop in the inside air
temperature. In these cases the applied step-
function drop in the outside air temperature is
transmitted directly by the ventilating air to the
inside air, and 6; responds accordingly in 2 man-
ner influenced by the thermal capacity of the
structure. In those cases with ¢ # 0, the heat
stored internally transfers to the inside air as its
temperature begins to fall, thereby helping to
offset the cooling influence of the cooler outside
air as it enters the heated enclosure. In all cases
the effect of the internal mass is to increase the
time constant; with the values chosen for the
illustrative examples, T is increased by many
times the corresponding value for the enclosure
when empty.

N P TT i. Heavy walls and internai capacity
5 o 2.Heavy wolls without internal capacity
'\6 2.Light walls and internal capacity
32 +4.Light walls without internal capacity
; SHeavy walls and internal caopacity
\ enclosure of smaller cross-section
o > 6.Heavy walls without internal capacity
Q 0-4 enclosure of smol!er Cross - sechon
T I
s 7 |
B 5 t L | .
é o6 HT'TTHNi ’T I i
< | :
>, ’ . j
; i N
o NRE 1
‘ S | ‘ i‘ ; i
3 i 1 I |
1-G i [ i —

Fii. 2. Transient cooling of enclosures ventilated at two air-changes per hour



TRANSIENT COOLING OF A HEATED ENCLOSURE

A further result is the influence of the thermal
capacity of the external wall. The air enclosed
behind a lightweight wall cools more quickly
than in a similar enclosure with a heavy cladding,
as indicated by the appropriate comparison of
values of T in Table 3. For the cases considered
this effect, though large, is less than that of the
internal heat storage in its influence on the cool-
ing rate of the inside air. The effect of internal
heat storage will become even greater as the value
of hs increases. The present numerical results
assume that A = #; and that the surface area of
the internal mass is the same as that of the en-
closure wall; if it were possible to arrange cir-
cumstances so that the value of 1/h; were neg-
ligibly smali, which is equivalent to writing
0:(r) = 6;5(¢) for all ¢, the cooling interval from
initial time to 7 would be lengthened, reaching
maximum values of 24 and 46 h in the lightweight
structures, Cases 3 and 3a, respectively. With
the exception of Case 1, which gives an increase
in T of about 40 per cent, the heavily clad struc-
tures are found to be little affected by such an
extreme change in the value of the interior sur-
face transfer coefficient 4;.

The temperature of the internal mass may be
of interest. Following the statement in the formu-
lation of the problem above that the internal
mass is at a uniform temperature 6 throughout
its bulk, an expression for the time variation of
65 is obtained from (17) by convolution, giving
a solution of the form
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Bis(7) = 0:s(0) exp (— [Bs/Clr) + %

Joexp (— [Bs/Cl[r — =']) . (") d~".

The exact solution, equation (23), for 6;(7)
is lengthy and the determination of the thermal
time constant 7 using this form of expression
involves considerable numerical work. For cer-
tain of the cases considered simple expressions
for the time variation of §; follow from using
the first and second roots calculated by the ap-
proximate method indicated in (25) er seq.
Equation (29), for example, is an approximate
solution for the Cases la, 3a and 5a (C # O,
V == 0) and the results in Table 4 demonstrate the
efficiency of the method. For relatively small
values of time the error is large, but it diminishes
with increasing values of time, and is negligible
when T is reached. Similar results are obtained
with the approximate solution (31) applied to
Cases 2a, 4a and 6a (C = 0, V' = 0). Cooling
curves calculated with the approximate result
(31) are shown in Fig. 3. The quantity /2/K[a}]
has been recognized in the analysis, (35), as the
ratio (heat stored/rate of heat loss from the en-
closure) in the steady state and, by definition,
is the time constant of the system C = 0, V = 0,
as represented by (31). Values of this ratio,
denoted W/q, are found to agree exactly with
the corresponding values of the thermal time
constant 7 calculated from the exact solution for

o]
~ la. Heavy walis and internal capacnyl
\Q\N 2d.Heavy walls without internal capcity
\\\\L 3a. Light walis and internal capocity
0-2 4a. Light wolls without internal capacity
'\’\ A 50. Heovy walls ond internal capacity |
g o enclosure of smaller cross ~ section
N \ \ 60. Heavy walls without internal capacity
. \ enciosure of smatler cross-section
- 04 N
3 N
3 \ \
S o6\ \ 'AYAN
3 N
\ §
08 _ | |
40\\ 208:6k 50\\30 ia
1o [ N |
-0 10 100 1000

/

H

h

FiG. 3. Transient cooling of unventilated enclosures,



A. W. PRATT and E. F. BALL

Table 4. Compurison of results caleulated by exact and approximate® methods:

Time - (By
ih) A D
Case 1a
10 07753
20 : 06622
40 0-4831
100 : 0-1875
200 00387
Case 3a
H . 07756
2 0-7626
4 ) 0-7371
10 0-6635
20 3-5615
40 0:3995
100 0-1440
Case Sa :
4 0-9794
10 ; 07837
20 0-5591
40 : 02773
100 ) 0-0339

* See equati{m (29).

these particular cases. The approximate form of
solution (31) has been extended to the Cases 2,
4 and 6 (C = 0, V +# 0) with ¢ in the ratio W/q
representing the total heat loss including the
amount due to ventilation, and gives the curves
shown in Fig. 4. The pattern of results is similar
to that of the previous group with C = 0, ¥ -0
and again the time constants are found to agree
closely with the exact values (see Table 5).

The fundamental significance of the ratio Wy
in transient heat flow appears to have been recog-
nized first by Reiher [4]. Esser and Krischer {5}
described the cooling of a plane wall with an
cquation of the form

a1y Bx. tu)exp (7 - ta) Y Wig)
where 7, s defined as the time taken for the cool-
ing process to spread through the whole wall,
and ¢ is a numerical value depending on the
values of #;. When the cooling process is rapid,
i approaches unity. The application of this
simple ratio of steady state terms to the cooling

Cases la. 3a and 5a (C + 0, V — @)

- ClaD logfexp(— [l (B, - Clay’]) [ay]exp( - [a

21 w{fiﬁ(”?) i)l

By ([ay?] ~ [ ®]) Approx. Exaci
0-0278 01969 0-1666
0-0084 03294 0-3067
0-0008 0-5161 0-4971

0-8125 0-8041

0-9613 09592

00943 01301 0-1219

0-0421 0-1953 0-2056

0-0084 0-2545 0-2598

0-0001 0:3344 0-3377

: 04385 04410

0-6005 0-601%

0-8560 0-8561

00738 00964 0-060Y

-0-0350 02413 0-2380

- 0-0097 0-4506 0-4601

0-0007 07234 §-7283

: 09661 0:9677

Table S. Wiy, ratio of hear stored to heat transmitted

compared with T, the exact value of the time consiant
Ventilated Not ventilated

Voo o0

Structure R S s

type Case Wlg 1 | Case Wiy /
(h) thy (h i}

Heavy, ¢ = 0 2 72 2a 137 137

Light, C =0 4 -0 10 ¢ 4a 0 20

Heavy, C~0 | 6 90 9t . 6a 137 1327

and warming of buildings is discussed by Bruck-
meyer {3].

For the most general Cases 1. 3 and 5. the
approximate solution (28) was found to be un-
satisfactory for all values of time. It appears from
the present numerical results that it is neces-
sary to use the exact solution for calculating
#{(z) for enclosures that contain internal heat
storage and are ventilated.

In each of the cases so far considered the wall
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Fra. 4. Transient cooling curves based on W/g, i.e. (heat stored/heat loss) for unventilated enclosures.
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Fic. 5. Transient cooling curves based on #/g, i.e. (heat stored/heat loss) for ventilated enclosures.

of the enclosure is assumed to be 2 homogeneous
slab. The analysis indicates that the thermal
capacity of the wall has a significant effect on
the rate of temperature change of the inside air.
In the case of an enclosure without internal heat
storage the change in 8; after a minimum time
interval is determined completely by the simple
ratio (heat stored/rate of heat transmission)
in the steady state. The simplicity of this
result could be especially useful in the practical
application of this type of solution and it
is worthwhile enquiring whether it extends to
other, less simple, forms of wall structure. An
extension of the analysis, reported in Appendix
1, confirms that W/q is the time-constant also

2Z—H.M.

for an enclosure wall of more complex construc-
tion consisting of two leaves of material of differ-
ent thickness, conductivity and diffusivity,
separated by a sealed airspace of uniform width.

CONCLUSIONS

Solutions have been obtained to a problem in
transient heat flow, defining the change with time
of the air temperature inside a uniformly heated
enclosure following a step-function change in the
ambient outside temperature. To illustrate the
application of these formulae for numerical
purposes, cooling curves have been calculated
for different enclosures representing a wide range
of conditions of ventilation, internal heat storage
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and thermal capacity of the wall of the enclosure.
The various cases are compared on the basis of
the thermal time constant. This property of the
enclosure is defined as the interval from initial
time, when the system is in the steady state, to the
instant when the change in the inside air tem-
perature reaches (1 - e~!) (where e is the base
of natural logarithms) of the sudden change in
the outside temperature. For a sealed enclosure
without internal heat storage the time constant
may be calculated most simply from the properties
of the external wall as the ratio W/gq, denoting
(heat stored/rate of heat transmission) in the
steady state. The values of W/q agree almost
exactly with values of the time constant deter-
mined from the exact solution. Good agreement
between these quantities is also found for the
ventilated enclosure without internal heat storage
with ¢, in this case, denoting the sum of the con-
duction and ventilation heat loss per unit area of
wall. It is also shown that the ratio W/q has the
same significance for both homogeneous and
composite structures forming the wall of the
enclosure.
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APPENDIX 1
The above analysis is repeated with a compo-
site structure replacing the single homogeneous
slab representing the external wall. This com-
posite wall consists of two homogeneous slabs

A. W, PRATT and E. F. BALL

of different material, and an airspace, unventi-
lated and of uniform width, sandwiched between
them. The two slabs, denoted regions | and 2,
have properties (I, ki, Ky), [(b - 1), ks, K] and
temperatures 6,(x, 1), 0 < x < [ 8(x, 1),
I, < x < k. At x = [, the surfaces exchange heat
across the cavity at a rate / times their tempera-
ture difference per unit area, x being invariate
in the cavity. The heated enclosure is ventilated
but has no internal heat storage.

The problem, formulated mathematically, is
as follows:

e0y(x, 1) 80(x, 1)

1 ix2 - & (0 < x -1y
1> 0) (b
o0y(x, t)
dy D g, 0,
= 0) (1.2)
oty (x, t
—ky - 1(@‘)(7) = h[bi(x. 1) — Oy(x, 1)),
(x =, > 0) (L)
POy(x, 1)  0by(x, 1) B B
o axz g e at - (l] AN [2-‘
1> 0) (1.4)
oly(x, t i ,
'*k2 — ng ) = [gl(xﬁ t) ’ 02(x7 f)],
(x =L, t >0) (L5)
00,(x, t ,
e D o e
(x =L, t >0) (1.6)
g = miBn — Oy, 1]
08, (x = L, t >0) (1.7)

1ho -+ x/k
Bi(x, 0) = 8o + ¢ /Wo " f/Al) 4.

Hz(xa 0) = 60
(Uho -+ hjky =+ 1A+ (x = h)fky)
1+~ vR o )
(y X < byt = 0)
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where
R{ .0 — l/ho + ll/kl + l/h
+ (lz - ll)/k2 + l/hi-

Let 8,(x, p), (r = 1, 2), denote the Laplace
transform of 6,(x, ¢). Applying the usual Laplace
transform procedure to (1.1) through (1.7), the
function 6,(x, p) satisfies the following trans-
formed equations

a0, (x, ho + xJkp)
K, :1(;2 P) — poi(x, p) + (_1/*‘:_—51—?;10—1
+0=00<x<ht>0) (1.8)
WD g ) = 0,1 > 0) (19)
déy(x, _ )
o P8P _ g, p) — b, )

(x=1,¢>0) (1.10)
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d26,(x, p)
K, fi(xz PY _ phx, )
(1 Jhe + Ljky + 1/h 4+ (x — Il)/ka)
1 + Z)Rt 0
40 =0, <x <hLt>0 (L11)

b 5P _ o, p) — 65 p
x=1l,t>0 (1.12)
f(x, i
e 5B _ (4, p) — b,

(x=hyt>0) (1.13)

,‘% = mlBi(p) — Bx, P)] + vBu(p),
(x = b, t >0). (1.14)

The solution of (1.8) and (1.11) subject to (1.9)
(1.10) and (1.12), (1.13) respectively is

Ry(x) g aobo

8o P .
0:(x, p) = -f- R 0 [\/(p) cosh N/(E) (i, — x) + asinh

aoaa,,

J(&)e

0] + ey | V) cosh \/ (&) -0+ 7%

\/ (R) =] < [vior cos \/ () = + o ian \/ (&) + sotsy o

as .
sinh

aa,f, v

(1.15)

x [(a,, + a) 4/(p) cosh J (é) I, + (p + aoa) sinh J (I%) 11] [p cosh J (%) x

+ ap sinh J(%)x],(ogx <)
1

9
fy(x, p) — Ry(x) q

+ aafo

e s+ oty [V s J(5) }
o ] i o e J(E)
+ (0 + aysinh [(£)4] x cosh /(&) 6 = 0 + [y sinn }
S e (2 )

|
~hG<x<i J
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where

Ap) = (a0 + a)v/(p) cosh \/(Kl) L+ (p -+ aoa) sinh ,\/(g) h {(1.17)
g2(p) = — j 8/2 sinh /( )l sinh /\/(I’%) Uh— 1)+ p [( iﬂ}z + ) b }
'\;/ ( 1?)‘71 cosh J (?‘?} (s — 1) + (@ + a) cosh J ( é I, sinh ,\/ (152) Uy — QJ
+ 4/ (P){( aoa + }alf:l b) sinh \/ ( Kz} Iy sinh \/ (I% ) (h — 1) ;(’H&)

-+ {aaai + {aq -+ a) '}zi?fz;?} x cosh / ( )Z cosh \/ (;;) - &)} +- haga:b
£ Y A St

[arsinn J{) o J(£) ¢~ wancon () sin J(2) ] J

a0 = hor/(K)lkvs @ =~ hy/(K) ks, @y = h/(Kp)ks, @y = hin/(Ko)fks.
R = Uho + ks (0 < % = 1)

Ro{x) = 1lho -+ Llky 4 Uh - (x — I)lkg (I <0 x 20 )
Ri. o= 1fho -+ hfky + Uk ++ (b — h)[ky -+ 1/hs. (1.19)
From (1.14)
8(p) = [hiblss p) + qIpl/(hi + v). (1.20)

Substituting for f(5, p) from (1.16) in (1.20) and applying the inversion theorem to the re-
sulting expression for 8;(p) gives the exact function of time thus

fred i

bi(t) = a tho + hjky + 1/h + (s — fﬁ/kﬁq _;?M_, n 2hifo Zexp exp (— a3t)
1+ oRio hi + 0 " By o+ +:,n] anGlan) 4
{aoal -+ h;; - {(ao + a) cos byay + (‘ff;‘? — an) sin byan | €os byan } (1-:21)
+ (a0 ©OS byom — an sin bya) i; sin ba?
where the summation extends over the positive roots, a, of
(a9 — ol — éﬁ%i) tan bya . tan bya — { (al + fuaf v) o (hfoiaf;a} tan fa
_ {q(ae + a) — (23%%%&} tan byx -+ @oa; + (a§1+ Jf )gﬂ” =0,
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and
aoaasy 1 asy b, (ao + a)azv] ég aay }
G(a”):{(hz+v)+@al+h¢+v+a_n[a°a1+ hi + v +an a0a+hi+v anbs
. aphay b a,av b (a0 + a)aw (ao -+ a)
sin byan cos byan + {(h: -1+—2v) + (_1.;1 (aao + i 1: u) + Es [a,,al -+ [ } + oan

h aqsaa
— blan} X ¢0s byay, sin bya, — {2 + [ﬁ%—g—a—gﬁ] by + (ao + @)b, — aT(hgi_j—% bs

aoaa,t ) . ahy + (@) -+ a)v _ @oaay
—_ mbl} s bla’ﬂ sin bzan + {['—”"‘ir_‘]:;’——‘ bl “I— (ao + a)bz a—’_ﬁﬁ(hl + U) bl

Qoaadyv
" al(h + v)

with b, = L/vV/Ky, by = (b — W)/ VK.

Application of the inversion procedure indicated in (25) through (27) yields, for the present
problem, an approximate form of solution similar to that obtained above for the enclosure with
a homogeneous slab representing the wall. For, expanding g(p)/+/p from (1.18) to a linear term
in p and putting v = 0 it may be shown that

“)i@l;_ei_@ ~ 1 — exp (— aft), (¢ large)
0o

ba} X €08 bjay cos byay

where
a? = aoay {a1by + (a0 + @by + acabiby, + (aoar/2)[b7 + B3]} (1.22)

The heat stored in the wall per unit area in the initial steady state relative to 6, as base
temperature is

8,0, 0) + 8,(};, 0 05(11, 0) + 85(5, O
W = pusih [_1(_’)%1(1’__) — 00] + posa(ly — 1) [ﬁ_)_—_z}'_ﬂ_?_) — 90]
1/he + L2k 1ho + Lk, + 1/h + (b — L)/2k
= py5ih(0i — 60) (LgR;i}f/_—l) + posally — 1)(0: — 00) [ / i/ks R'l/ o+ (: )/ 2].

Assuming no ventilation, heat transmission is by conduction only through the wall so that in the
initial steady state

q = (03‘ -_ 00)/Ri . 0.
Composing the ratio (heat stored/rate of heat transmission) in the steady state gives

W 1o 1oL 1 L—]
i p1sih (E + ‘z—"kl) + pose(l — 1) (E + E—i_ Bt ok, ), (1.23)

and introducing the relationships (1.19) into (1.23) leads to the result

w 1{_",’L1+(a,,+a)(12 1)+a b M+%[ﬁ+(lz"!‘)2]}, (1.24)

o - &
7 @ma. Wk VK, CVK T VK 2 KK

where the quantity on the r.h.s. will be recognized as 1/[o?], (1.22).
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Résumé—On fait une étude théorique de la variation, en régime transitoire, de la température de 1'air
4 Pintérieur d’une enceinte a laquelle on fournit un flux de chaleur constant, la température extéricure
subissant une variation discontinue. Dans un petit nombre de cas particuliers on a comparé par le
calcul l'effet de la ventilation, du stockage intérieur de la chaleur, des propriétés thermiques des
parois de ’enceinte sur le taux de variation de la température intérieure. On montre que, dans
certaines conditions, le rapport (chaleur stockée/taux de chaleur perdu par ’enceinte) est, en régime
permanent, le parameétre qui détermine la variation de la température intérieure.

Zusammenfassung—Die kurzzeitigen Verdnderungen der Lufttemperatur in einem Hohlraum, in

dem gleichmassig Wirme erzeugt wird, dessen Umgebung aber einem schrittweisen Temperaturwechsel

unterliegt, wurden theoretisch untersucht. Die Einfliisse der Ventilation, der inneren Wirmespeiche-

rung und der thermischen Eigenschaften der Hohlraumwinde auf die Temperaturinderung im

Hohlraum liessen sich durch numerische Berechnungen an Hand ausgewihlter Biespiele bestimmen.

Unter gewissen Bedingungen stellt das Verhéltnis (gespeicherte Wirme/zeitlich abgegebene Wirme)
im stationdren Fall den bestimmenden Parameter fiir die Anderung der Innentemperatur dar.

Annoranua—TeopeTuyeck HUcCIeI0BaH HECTALMOHADHBIT TEMIEDATYPHBUI rponece B
KaMepe ¢ PABHOMEDHBIM PACTIPEJEIeHUeN TeIlla, DOCTYTA0IIero B Heé IIyTeM CKA4YLko0HpasHOro
HU3MeHUA BHeIlHell TeMHepaTypsl. A HEKOTOPHI OTEJIBbHBIX CJAY4YaeB C IOMOLIbI0 YKCIEH-
HOro pacuyera BBIABJIAIOTCA 3aBUCUMOCTH OXJIAMEEHUs , BHYTPEHHEr0 3araca Tenja 4 TepMu-
4eCKHUX CBOWCTB CTEHOK KaMepHl OT CKOPOCTH U3MEHUA BHYTPeHHell Temmepartyph. Ilokasauo,
4TO B ONpEJeNeHHEX YCIOBMAX OTHOIIEHHe (HAKOIUIEHHOTO TeIsIa K Tedy, TepsieMoMy Ka-
Mepoii) B yCTAHOBHBLIEMCH COCTOSHNM IIpeficTaBiseT cofoit mapameTp, KOTOPHIl ompejenser
nBMeHeHue BHYTPEHHeH TeMueparyphl.



