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TRANSIENT COOLlNG OF A HEATED ENCLOSURE 
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Abstract-A theoretical examination is made of the transient change in the air temperature inside an 
enclosure, in which heat is produced at a uniform rate, following a step-function change in the outside 
temperature. The influences of ventilation, internal heat storage, and the thermal properties of the 
walls of the enclosure upon the rate of change of inside temperature are compared by numerical 
calculation for a few selected cases. It is shown that under certain conditions the ratio (heat stored/ 
rate of heat loss from the enclosure) in the steady state is the parameter which determines the inside 

temperature variation. 

NOMENCLATURE = Kt/P; 

82, inside air temperature, degF ; iIt = hil/k; 
9 
%$), 

outside air temperature, degF; B, = h,l/k; 
temperature at position x in wall, degF; Bs = hsllk; 
temperature of internal mass, degF;- 
inside wall surface heat transfer coeffi- 
cient, Btu/ft2h degF; 
outside wall surface heat transfer coefi- 
cient, Btu/ft2h degF; 
heat transfer coefficient at surface of 
internal mass expressed per unit area of 
enclosure wall, Btu/ft2h degF; 
thermal capacity of internal mass per 
unit area of wall, Btu/ft2 degF; 
ventilation heat loss rate per unit tem- 
perature difference and per unit area of 
enclosure wall, Btu/ft2h degF; 
heat input per unit area of wall; 
conduction heat flux per unit tempera- 
ture difference, Btu/ft2h degF; 
heat stored per unit area of wall, Btu/ft2; 
thermal time constant, h; 
thermal conductivity, Btu/ft h degF; 
thermal diffusivity, ft2/h; 
density, lb/ft3; 

A = 1 + l/Ba + l/B,; 
B = [B&G + Vl/K(Bs + Bi + VI. 

Additional nomenclature used in Appendix 1 
19,(x), temperature at position x in outer leaf 

of cavity wall (0 < x < Q, degF; 
e,(x), temperature at position x in inner leaf of 

cavity wall (II < x < Z2), degF; 
h, coefficient of heat transfer across cavity, 

Btu/ft2h degF; 
1 thickness of outer leaf, ft; 
(;4 - ZJ, thickness of inner leaf, ft; 
kl, thermal conductivity of outer leaf, Btu/ft 

h degF; 
k,, thermal conductivity of inner leaf, Btu/ft 

h degF; 
KIT thermal diffusivity of outer leaf, ft2/h; 
K2, thermal diffusivity of inner leaf, ft2/h; 
Pl, density of outer leaf, lb/ft3; 
P27 density of inner leaf, lb/ft3; 
% specific heat of outer leaf, Btu/lb degF; 
% specific heat of inner leaf, Btu/lb degF; 

specific heat, Btu/lb degF; 
thickness of wall, ft; 
position in wall, ft; 
time, h; _ _ _ 

on,n = 1,2, 3, . . ., successive roots of re- 
levant function; 

Ro, air-to-air thermal resistance of cavity 

[aJ[a,], approximations to aI, a2; 
wall, ft2h degF/Btu; 

4 = x/l; 
a0 = hoz/(KI)lk,; 
a = WKd/k,; 
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INTRODUCTIOh 

THE TRANSIENT flow of heat in a structure as- 
sumes a variety of different forms that may have 
a practical interest. The present analysis for 
example derives from a consideration of the 
cooling rate of buildings as it affects the selec- 
tion of basic design temperatures for space- 
heating installations. The present formulation is 
hypothetical; it is intended to be of general 
interest without reference to any particular 
practical situation. 

The rate at which an enclosure responds ther- 
mally to a change applied in the ambient 
temperature will depend upon the thermal 
capacities of the enclosing wall and the interiol 
mass and, if ventilated, on the rate of air change. 
In this paper, exact analytical solutions are ob-- 
tained and evaluated numerically to demonstrate 
the interplay and relative importance of the 
various factors for a few selected cases. The ana- 
lysis is an improvement on less rigorous methods 
used in previously published work which deal5 
primarily with the application of the problem 
to buildings and considers heat transfer in the 
external sections only [I. 2, 31. 

FORMULATION OF THE PROBLEM 

The situation considered in this paper and 
illustrated in Fig. I. is the time-variation of the 
air temperature within an enclosure following a 
sudden drop from 8, to zero in the ambient 
temperature, which is assumed to be uniformly 
distributed over the external boundary for all 
values of time. In the initial steady state con- 
dition, and at all subsequent values of time. heat 
is added directly to the air inside the enclosure 
at a constant rate y. Heat is lost from the en- 
closure by conduction: and further heat is lost 
by exchange of inside and outside air, that is by 
ventilation, at a constant rate c per unit differ- 
ence in air temperature; otherwise the heat 

capacity of the enclosed au 15 assumed !:I bc 
negligibly small. The enclosure contains inrernai 
mass, of thermal capacity C, \X hose temperature: 
is assumed to be uniform throughout for ‘:I! 
I 0 and initially equal to that of the intern;4 
air. The quantities y, c and I art‘ defined per QI?II 
area of the enclosure nail. I (:F xli : ;~Lw, (lf 1: m 
the surfaces of the internal !ll:t:5j ;it lemperat~m~ 
&(f), and both surfaces of the enciosurc fail ,~t 
temperatures 0(/, t) (inside surface). and ;/iii. r! 
(outside surface), exchange heat with the COW 
tiguous air at /T,~, hf and 17, times their respecilkc 
temperature differences per unit area of the \\aii 
and per unit time. The analysib consider:, nisi’ 
enclosure walls as a Jab OT infinite t::hl~!~l 
bounded by parallel planes di\taitcc I aput. i\ irh 
constant thermal propertic, jconducti? it! i 
diffusivity K), that ib, the conduction h.~ 
transfer is assumed to be uni-directional nion~i 
the s axis and perpendicular to the surfat<> 

linder these conditions an cxpressiojl Fuji, :h~ 
Inside air temperature, Oi(t), in required that sxC--. 
fies the problem formulated n-rathemat icall\: :I‘, 
rollo~xs. 

Initially the system is in steady state so th:?i 
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Therefore, by substitution 

---._-~-- 
[u + (l/ho +:,‘k + VW1 

(W o -I- xl& 
= Be + iq-i(i/%aqiE-Tq~’ 

(0 < x < I, t = 0). (6) 

Also &, = S,, (t = 0). 

Making the substitutions 

[ = x/j, T =: Kt/l”, 2& = hd/k, Bo = hoi/k, 

3s = h,l/k, Q -= gI/k, C r= &Ilk, V = d/k, 

equations (l)-(6) are written more conveniently 
as foffows : 

e = &[&(T) -- @, T)] + v&(T) 

- &I&S(~) - Q,(T)], (s’ = 1, 7 > 0) (LO) 

c d&(T) 
___ = ---a[eig(T) - @Z(T)], (T > 0) 

d-r 
(I I) 

where A I;. 1 -+ l/& + l/B,. 
The equations in dimensionless form are solved 

by a routine application of the Lapface trans- 
form. Multiplying (7) through (11) by e-‘p’ and 
integrating with respect to T between the limits 
0, co it is found that the function S(& p) satisfies 
the following transformed differential equation 
and boundary conditions, 

d2&, P> -.--.- - 
df2 

p&( > p) f B . .._ i_ -2lBo. 
1 + VA 1 + VA 

--___- - &fly& p), (f = 0, 7 > 0) 
dE 

df@, P> 

(14) 

T>O) (15) 

Q 

where iJ(f, p) .== 
s 

e-%9(& T) dT. 
0 

The general solution of (I 3) subject to (14) 
through (17) is 

-t Bs)ti(p) sinh d(p) -I- MCP + h) + Cp&l[Bz cash l/(p) + 2jf~) sinh \/(y)}) sinh &I& 

1 8, VBi 
-- 

z/(P) 4(p) i d(P) 
(Cp -I- Bs) -I- $ MCp + B&‘(p) sinh 2/(p) + EV(Cp + &) 

-!- CP&J[BZ sinh d(p) -t- t/tp> cash v’W1~) cash v’(P)~ (18) 

where 

8~) = [V(CP + &)(Bi -!- BJ + CP&(& + Bo) + B&(Clp + Bs)] cash 2/(p) -t [(Cp + &) 

-I- &CP + C&&Bd d(p) sinh y’(p) 4 V(CP -I- B,) (p - BiB&sinh dp)/1/p. (19) 
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Equation (18) may be inverted to give the temperature distribution. H(;I, T). within the 
enclosure wall: attention however will be confined to calculating a solution for the inside ai1 
temperature O?(T). From (17) 

I201 

Substituting the expression (20) for &(p) into (16) yields 

i, :: 1 ). (71) 
Substituting for [&i;-. /J)],~ , into (21) from (1X) leads, after rearrangement. to the result 

(iiCP) 
QA ,h, B; CpBJ(Cp ; B,?) Bi Bdo 

~‘~~~ P(i ? VA) 1) I Bi I C&/(Cp k) I M P) 
(C/7 R,, 

122) 

The air temperature, O!(T), is found from its Laplace transform (22) by use of the inversion 
theorem and contour integration. Thus 

The transform e,(p) is seen to be an analytic function of y with a simple pole at the origin 01 
the p-plane and the other singularities simple poles at points located on the negative real axis. 
Carrying out the integration indicated. the solution for the air temperature inside the enclosure is 
as follows : 

(23) 

C(Bi + B~)Q$ cos an, f- [BiB,[I -.+ B,(I mr- C)] .- [BS(Bi mT B. ;-- 3) 

.~ Bi(B, + 3)]Ca@ (sin an)/ul, +- Vt [B.? -+ C(2Bi -.r 2Bo i BiB,) CCL’ l, BiB, B.&t] cos u !, 

-ir [CBiB, $- B,s( I Bi -+ B,,) C’(Bi sm B. $- 3)afi + BtB,Bs/af,](sin a,)/% I 

and the summation is taken over the positive roots n,,. II I, 2, 3. etc. of the eigenfunction 

Cu”[(V + B,)(B? + B,) -,- BiB,] 

n tan a CG’(~m~~Bcq i I’) 

Bsc?[V(Bi J- B,) -c BiB,] 

o_‘[CB~B~(V J- Bs --+ Bs( V A Bi)] 1- VB6BoB.q ’ 
(24) 
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Numerical evaluation of the exact solution (23) is tedious, largely because of the labour involved 
in calculating the zeros of 4(p) using (24). Except for small values of time, however, the roots 
higher than the second are unlikely to contribute significantly to the computed result. 

Approximate values of the zeros a:, u$ may be calculated more easily by expressing #(p) as a 
pol~omia~ in p; thus 

(25) 

The polynomi~ (25) has distinct zeros at p = -a:, --a$, . . II ; decomposing #(p) into linear 
factors and factorizing out the product afai . . . the function may be written C(p) = a(1 
+ pla:)U + P/a:) . . . where a is a constant which, by putting p = 0 in (25) is recognized as 

a == (1 + VA)BfBoB8. Writing, therefore, d(p) = (1 $- VA)BfB,B, r”r (1 + p/a:) the calculation of 
the residues now takes the form i-=1 

where L-l denotes the Laplace inversion and the prime in II’ indicates that the term given by 
s = r is omitted from the product. 

For n~erical purposes experience suggests that the residues contributed by the infinite 
product at P f 1, r -= 2, only need be calculated in the inversion integrand. Assuming therefore 
that the zeros of (b(p) may be determined approximately from (25) as the roots of a quadratic in 
p and writing these as [a:], [a$] the transform solution ei(‘) may be inverted as indicated in 
(26) to give 

x exp t- b$k> 
8, VB2 

+ @(& + B$+--pjZ ’ 
! 

’ + 
&(Bs - C~)~B~ -t Bs -!- V> Laos V’(P) + (B~~~~) sin dB1 l.-_.l-.-- -- 

BO f%l + J’4(1 - S/[$I) (1 - fW?l> ---- .> 
x exp (- PT). (27) 

In either form of solution, (23) or (27), the steady state term QA/(l + VA) is equivalent to 
q/(H + zl), where H, D denote respective the initial conduction and ventilation rates of heat 
loss from the enclosure per unit difference between the inside and outside temperatures. 
The first term or constant therefore represents the initial inside temperature excess over the 
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outside temperature. Writing this as [#i(O) H,] and substituting into (27,. the apprt,ximatc 
solution passes into the more convenient form: 

H<(O) .- @i(7) , (& C’[a$ [a;] ( C’Difl3, c’[afl)(cos [lX,j (H,: [a,]) sin j’l,j) 

i,‘)(B 1gq i 

[Ci.z] (B,/ [a,], Sill /‘X2.$ 
! f,c)(p 1q 

Particular cases follow by taking limiting values 
of the parameters: for example putting C; 0 
to correspond with an unventilated enclosure 
having internal heat storage. (28) reduces to 

Assuming further that the singIe root [CL+] in 
(3 I) may be calculated by writing +(pj as a lineal 
function only in p, it follows that with C . 0 
and I’ !I. 

It will be clear that the approximate solution 
(31) defines the exponential decay in air tem- 
perature that follows from representing th~x 
cooling process simply as 

(33, 

Further examination shows [u$ to be a satis- 
factory approximation to CL! but the method 
yields a poor approximation for the second root. 

The results of numerical calculation given 
below indicate that in general [a$] 9 [a:]; in the 
region where IpI is small therefore the first root 
[CL:] only is required in the inversion and the 
solution, for example, for the fractional tem- 
perature change inside a sealed enclosure having 
no internal heat storage approximates satis- 
factorily to the simple decay expression of 
familiar form: 

6,(O) .-_ &(T) I 

67 exp (-.- [a+). (31) 

I I/e so that (l/[aB) is shown to be the value 
of T for which the air teJnperature inside the 
unventilated enclosure has fallen by about 67 
per cent of the temperature change applied 
externally. By analogy with current flow in a 
~apacitative circuit consisting of a condenser. 
capacitance C, discharging through a scrieh 
resistance R, P/K[uf] may be identified as the 
thermal time-constant of the cooling system (33). 
In current flow the time constant is well known as 
the product RC: a sintiiar analogous expression 
may be shown to apply in the present approxi- 
mate calculation of heat flow. For, relative to 8, 
as base temperature, the initial heat content per 
unit area of the wall of thickness I and volumetric 
specific heat ps is given by 
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w = psi 
[ 

w, 0) + w, 0) _ 

2 
e 
* 
1 

or 

By substituting from the relation (34) into (31) 
it follows that 

&(O) - h(t) 
~ = 1 ~- exp [- t/(W/q)]. (35) 

00 

The expression (35) recognizes the time constant 
for the simplified case represented by (33) as the 
ratio (heat stored/rate of heat transmission) in 
the steady state. 

NUMERICAL RESULTS AND DISCUSSION 

To illustrate the application of the above solu- 
tions, the cooling curves of six enclosures of 
different construction have been calculated, for 
a ventilation rate, in the first instance, of two air 
changes per hour. By repeating the calculations 
for zero ventilation the transient response of the 
enclosure structure alone is evaluated. Table 1 
sets out the various cases considered as 1, la, 
2, 2a etc. and Table 2 summarizes the data used 
in the numerical calculations. 

The structure type is described as heavy or light 
according to the weight per unit area of the 
external walls. Basically, three different pairs of 

Table 1. Reflrence code of numerical examples 

Structure Ventilated Not ventilated 
type V#O v=o 

Heavy, C # 0 1 la 
Heavy, C -= 0 2 2a 
Light, C ti- 0 3 3a 
Light, C = 0 4 4a 
Heavy, C f 0 5 5a 
Heavy, C 0 6 6a 

Table 2. Data used in numerical examples 

Case k/l K/P c v hi h, h, 

1 0,750 0.053 19.2 0.398 1.43 3.33 1.43 
la 0,750 0.053 19.2 - 1.43 3.33 1.43 
2 0,750 0.053 - 0.398 1.43 3.33 - 
2a 0,750 0.053 -- - 1.43 3.33 - 
3 0,750 0.367 19.2 0.398 1.43 3.33 1.43 
3a 0,750 0.367 19.2 - 1.43 3.33 1.43 
4 0,750 0.367 - 0.398 1.43 3.33 - 
4a 0.750 0.367 - - 1.43 3.33 - 
5 0.723 0.053 7.34 0.210 1.43 3.33 1.43 
5a 0.723 0.053 7.34 - 1.43 3.33 1.43 
6 0.723 0.053 - 0.210 1.43 3.33 - 
6a 0.723 0,053 - - 1.43 3.33 - 

Notes : 
(i) The value selected for hs implies that the surface 

areas of the enclosing wall and the enclosed mass are 
equal. 

(ii) The values selected for u, being based on a ventilation 
rate of two air changes per hour, imply that the ratio 
of the enclosed volume to the area of the enclosing 
wall takes the following values: 

Cases 1, 2, 3, 4-10.48 
Cases 5, 6 - 5.53. 

enclosure types are considered : 1 and 2 ; 3 and 
4; 5 and 6. Cases 1, 2 and 3, 4 differ only as 
regards the weight of the external wall; in all 
other respects they are identical. The volume 
enclosed in Cases l-4 is four times that for Cases 
5 and 6; the (volume/wall area) ratio is 10.5 for 
Cases l-4 and 5.5 for Cases 5 and 6. The cases 
have been selected and grouped to demonstrate 
within each pair the influence of internal heat 
storage on the rate of cooling at the ventilation 
rates indicated. A comparison between pairs 
indicates the influence of the thermal capacity of 
the external wall. 

It is convenient to calculate the cooling curves 
using the solutions as expressed in dimensionless 
notation. The curves for cases shown in Figs. 2 
and 3 have been calculated using the exact form 
of solution and are plotted to show the change 
with time in the inside air temperature expressed 
as a fraction of the causative drop in the ambient 
outside temperature. In Fig. 2 the curves refer 
to enclosures ventilated at two air changes per 
hour; the corresponding curves for zero ventila- 
tion are shown in Fig. 3. A horizontal line drawn 
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FIG. 1. Schematic representation of temperature 
change in a heated enclosure. 

through the vertical scale at [e,(O) ~i(Z,li& 
1 e-l. or 0.63 approximately intersects each 
curve at the corresponding value of the thermal 
time constant, T, which is read off along the 
time scale. A summary of the time constants 
obtained from the curves is given in Table 3. 

An indication of the influence of ventilation 
on the rate at which an enclosure cools can be 
obtained from a comparison of the correspond- 
ing curves in Figs. 2 and 3 and, quantitatively, 
from the respective values of thermal time con- 
stant. In Cases 1 to 4, the time constant of the 
sealed enclosure is roughly two to three times 
that of an identical one ventilated at two air 
changes per hour. For a smaller structure. repre- 
sented by Cases 5 and 6. the corresponding 
increase is less, being about 50 per cent for the 
same air change rate. The curves in Fig. 2 

Heavy. C‘ 0 
Heavy. c‘ 0 

Light. C 0 
Light. C 0 

Iieavy, C 0 
Hea\). C‘ 0 

indicate an instantaneous drop in the inside ail 
temperature. In these cases the applied step- 
function drop in the outside air temperature is 
transmitted directly by the ventilating air to the 
inside air, and Bi responds accordingly in a man- 
ner influenced by the thermal capacity of the 
structure. In those cases with C f 0, the heat 
stored internally transfers to the inside air as its 
temperature begins to fall. thereby helping to 
offset the cooling influence of the cooler outside 
air as it enters the heated enclosure. In all cases 
the effect of the internal mass is to increase the 
time constant; with the values chosen for the 
illustrative examples, 7 is increased by many 
times the corresponding value for the enclosure 
when empty. 

I. Heoiy walls and Internal capoc~ty 
2 Heavy walls wthout internal capoclty 
3.Light walls and Internal capacity 

,4.Light walls without internal copacltv 
5.Heavy walls and Internal capacity 

enclosure of smaller cross-seci~on 
6.Heavv walls wthout Internal caoacbtv 

FK ,. 2. Transient cooling of enclosures ventilated at two air-changes per ho111 
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A further result is the influence of the thermal 
capacity of the external wall. The air enclosed 
behind a hghtweight wall cools more quickly 
than in a similar enclosure with a heavy cladding, 
as indicated by the appropriate comparison of 
values of T in Table 3. For the cases considered 
this effect, though large, is less than that of the 
internal heat storage in its influence on the cool- 
ing rate of the inside air. The effect of internal 
heat storage will become even greater as the value 
of hs increases. The present numerical results 
assume that h, = hi and that the surface area of 
the internal mass is the same as that of the en- 
closure wall; if it were possible to arrange cir- 
cumstances so that the value of l/hs were neg- 
ligibly small, which is equivalent to writing 
e,(t) = 19,(t) for all t, the cooling interval from 
initial time to T would be lengthened, reaching 
maximum values of 24 and 46 h in the lightweight 
structures, Cases 3 and 3a, respectively. With 
the exception of Case 1, which gives an increase 
in T of about 40 per cent, the heavily clad struc- 
tures are found to be little affected by such an 
extreme change in the value of the interior sur- 
face transfer coefficient h,. 

The temperature of the internal mass may be 
of interest. Following the statement in the formu- 
lation of the problem above that the internal 
mass is at a uniform temperature 6rs throughout 
its bulk, an expression for the time variation of 
0~ is obtained from (17) by convolution, giving 
a solution of the form 

0 

0.2 

s 
‘exp (- [&/Cl [T - ~‘1) . &CT’) d+. 
0 

The exact solution, equation (23), for B&) 
is lengthy and the determination of the thermal 
time constant T using this form of expression 
involves considerable numerical work. For cer- 
tain of the cases considered simple expressions 
for the time variation of 6i follow from using 
the first and second roots calculated by the ap- 
proximate method indicated in (25) et seq. 
Equation (29), for example, is an approximate 
solution for the Cases la, 3a and 5a (C # 0, 
V = 0) and the results in Table 4 demonstrate the 
efficiency of the method. For relatively small 
values of time the error is large, but it diminishes 
with increasing values of time, and is negligible 
when T is reached. Similar results are obtained 
with the approximate solution (31) applied to 
Cases 2a, 4a and 6a (C = 0, V = 0). Cooling 
curves calculated with the approximate result 
(31) are shown in Fig. 3. The quantity Z”/K[u$ 
has been recognized in the analysis, (35), as the 
ratio (heat stored/rate of heat loss from the en- 
closure) in the steady state and, by definition, 
is the time constant of the system C = 0, V = 0, 
as represented by (31). Values of this ratio, 
denoted W/q, are found to agree exactly with 
the corresponding values of the thermal time 
constant T calculated from the exact solution for 

walls ~2nd internal, cap 
“W Of smaller cross- 
~011s wthout internal 

FIG. 3. Transient cooling of unventilated enclosures. 
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Case X:1 

10 
20 
30 

100 
200 

Case 3a 
I 
2 
4 

10 
LO 
30 

100 

Case 53 
4 

10 
20 
40 

100 

* See equation (29). 

0.7753 
Oam 
0.483 1 
0.1875 
0.0387 

0+7756 
0.7626 
o-737 1 
0-565s 
05615 
0.3995 
0 1440 

0‘9794 
0*7837 
0.559 I 
0.2773 
0‘0339 

these particular cases. The approximate form of 
solution (31) has been extended to the Cases 2, 
4 and 6 (C :-. 0, V # 0) with q in the ratio W/g 
representing the total heat loss including the 
amount due to vellti~atio~l, and gives the curves 
shown in Fig. 4. The pattern of results is similar 
to that of the previous group with C :-- 0. V 0 
and again the time constants are found to agree 
closely with the exact values (see Table 5). 

The fundainen~al significance of the ratio IV/q 
in transient heat flow appears to have been recog- 
nized first by Reiher [4]. Esser and Krischer [S] 
described the cooling of a plane wall with an 
cyuation of the form 

i,(x, t) tit.\-. tv) exp (f r,):$( W/q) 

where fU is detiued as the time taken For the cool- 
ing process to spread through the whole wall, 
and + is a numerical value depending on the 
values of tN, When the cooling process is rapid, 
9 approaches unity. The application of this 
simple ratio of steady state terms to the cooling 

0.0278 
om84 
0~0008 

0.0943 
0@42 1 
04lo84 
oao5 I 

097% 
0.0350 

.0.~97 
OmO7 

/ Appro\. txacr 

0*19h’, 0. I666 
0.3294 0.3067 
O-5161 0.497 I 
0+3125 0m4 I 
0.9613 09597 

0~130l O~iZlil 
0.1953 0.2056 
0.2545 0.2598 
0.3344 0.337-T 
0.4385 0.44 111 
Cl.6005 0.6018 
OK560 0~8% 1 

and warming of buildings is discussed by Brttck- 
meycr [3]. 

For the most general. Cases I. 3 and 5. the 
~~pproximate solution (28) was found to he un- 
satisfactory for all values of ti inc. t t appears from 
the present numerical results that it i‘; neces- 
sary to use the exact solution for ~a~~u~atillg 
H&T) for enclosures that contain internal heat 
storage and are ventilated. 

In each of the cases so far considered LIIL” waii 
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nclosure with heavy walls 

Enclosure with light wolis 

6a. Enclosure with h 

FIG. 4. Transient cooling curves based on W/q, i.e. (heat stored/heat loss) for unventilated enclosures. 

2. Enclosure with heavy walls 

4. Enclosure with light walls 

6. Enclosure with heavy walls 
(smaller size1 

0.8 

f, h 

FIG. 5. Transient cooling curves based on W/q, i.e. (heat stored/heat loss) for ventilated enclosures. 

of the enclosure is assumed to be a homogeneous 
slab. The analysis indicates that the thermal 
capacity of the wall has a significant effect on 
the rate of temperature change of the inside air. 
En the case of an enclosure without internal heat 
storage the change in & after a min;mum time 
interval is determined completely by the simple 
ratio (heat stored/rate of heat transmission) 
in the steady state. The simplicity of this 
result could be especially useful in the practical 
application of this type of solution and it 
is worthwhile enquiring whether it extends to 
other, less simple, forms of wall structure. An 
extension of the analysis, reported in Appendix 
1, confirms that W/4 is the time-constant also 

ZZ-H.M. 

for an enclosure wall of more complex construc- 
tion consisting of two leaves of material of differ- 
ent thickness, conductivity and diffusivity, 
separated by a sealed airspace of uniform width. 

CONCLUSIONS 
Solutions have been obtained to a problem in 

transient heat flow, defining the change with time 
of the air temperature inside a uniformly heated 
enclosure following a step-fiction change in the 
ambient outside temperature. To illustrate the 
application of these formulae for numerical 
purposes, cooling curves have been calculated 
for different enclosures representing a wide range 
of conditions of ventilation, internal heat storage 
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and thermal capacity of the wall of the enclosure. 
The various cases are compared on the basis of 
the thermal time constant. This property of the 
enclosure is defined as the interval from initial 
time, when the system is in the steady state, to the 
instant when the change in the inside air tem- 
perature reaches (1 ~~ e -‘) (where e is the base 
of natural logarithms) of the sudden change in 
the outside temperature. For a sealed enclosure 
without internal heat storage the time constant 
may be calculated most simply from the properties 
of the external wall as the ratio W/q, denoting 
(heat stored/rate of heat transmission) in the 
steady state. The values of W/q agree almost 
exactly with values of the time constant deter- 
mined from the exact solution. Good agreement 
between these quantities is also found for the 
ventilated enclosure without internal heat storage 
with q, in this case, denoting the sum of the con- 
duction and ventilation heat loss per unit area of 
wall. It is also shown that the ratio W/q has the 
same significance for both homogeneous and 
composite structures forming the wall of the 
enclosure. 
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APPENDIX 1 

The above analysis is repeated with a compo- 
site structure replacing the single homogeneous 
slab representing the external wall. This com- 
posite wall consists of two homogeneous slabs 

of different material, and an airspace, unventi- 
lated and of uniform width, sandwiched between 
them. The two slabs, denoted regions 1 and 2, 
have properties (II, k,, K,), [(I, I,), k,, Kz] and 
temperatures 0,(x, t), 0 s s -c. I,; M,(x, f), 
I, < x < I,. At x = II the surfaces exchange heat 
across the cavity at a rate h times their tempera- 
ture difference per unit area, x being invariate 
in the cavity. The heated enclosure is ventilated 
but has no internal heat storage. 

The problem, formulated mathematically. is 
as follows: 

f __’ 0) (1.4j 

hr [&(.x, t 1 Hi(t)l5 

(A --= I‘& t > 0) (1.6) 

ht[@r(tl -- B2(x, t)] 

L u&(t), (x = 12, t > 0) (1.7) 

(l/ho + 1,/k, T- I/h t (x --- /J/k%) 

I T CRi o 
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where K d2&(x, P) 
2 dx2 - P92k PI 

Rr . o = l/ho + 1,/k, + l/h 

+ (12 - U/k2 + Wt. 
+ jWo + W, + l/h + (x - "lk"'4 

1 + V&.O 

Let 0,(x, p), (r = 1, 2), denote the Laplace 
transform of 0,(x, t). Applying the usual Laplace 

+ eo = 0, (r, < x < 12, t > 0) (1.11) 

transform procedure to (1.1) through (1.7), the 
function f%(x, p) satisfies the following trans- 

k d&(x,p) 
2 7 = h[~,(x, 14 - h(x, ~11, 

formed equations 
(x = 11, t > 0) (1.12) 

K d’gl(x, P) 
1 dx2 - P’l(x, P) + 

Who + xlMq 
1 + v& 

.O 
k d’%(x,p) 

~ = M%(p) - ~2@, 181, 
2 dx 

+ 00 = 0, (0 < x < II, t > 0) (1.8) (x = 12, t > 0) (1.13) 

k d&(x,p) 
1 dx 

= h, 8, (x, p), (x = 0, t > 0) (1.9) ; = ht [&@) - 02(x, ~11 + v’h(P), 

k d4(w4 
___ = h[‘&, PI - 4(x, PII, 

(x = 4, t > 0). (1.14) 

1 dx The solution of (1.8) and (1.11) subject to (1.9) 
(X = iI, t > 0) (1.10) (1.10) and (1.12), (1.13) respectively is 

x (a0 + a) 2/(p) cash J( > $ 4 + (p + adz) sinh 
1 

+ a, sinh 
J( )I 

f x , (0 < x < II) 
1 J 



716 

where 
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(1.19) 

(1.20) 

Substituting for 0&l,, p) from (1.16) in (1.20) and applying the inversion theorem to the re- 
sulting expression for ~~~~) gives the exact function of time thus 
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and 

sin ban cos b2an + 

x cos b,a, sin b2a, - 

sin b,a, sin b2an + 

b, + (a, + a)b, - 

b, + (a, + a)b, - 

x cos b,a, cos b,a, 

with bl = 1,/~/K,, b, = (I, - l,)/l/K2. 

Application of the inversion procedure indicated in (25) through (27) yields, for the present 
problem, an approximate form of solution similar to that obtained above for the enclosure with 
a homogeneous slab representing the wall. For, expanding g(p)/dp from (1 .lS) to a linear term 
in p and putting v = 0 it may be shown that 

4(O) - e,(t) 
00 

N 1 - exp (- a:t), (t large) 

where 

a: = aoal {ulb, + (a, + u)b2 + wzb,b2 + (aoal/2)lbb: + b$l>-‘. (1.22) 

The heat stored in the wall per unit area in the initial steady state relative to B. as base 
temperature is 

w = PI4 
WA 0) + UL 0) 

2 - e0 
1 

+ p2s2u2 - 4) 
e2(4, O> + e2(z2, '1 _ 

2 
fj 
0 1 

= pls,4(f4 - 0,) 

l/ho + l&k, 
+ p2s2u2 - wh - 0,) 

l/ho + 4/k, + l/h + (12 - 

Ri.o Ri.o 

Assuming no ventilation, heat transmission is by conduction only through the wall so that in the 
initial steady state 

4 = (or - eo)iRr . o. 

Composing the ratio (heat stored/rate of heat transmission) in the steady state gives 

+ PG2s2(12 - 0 

and introducing the relationships (1.19) into (1.23) leads to the result 

where the quantity on the r.h.s. will be recognized as I/[a:], (1.22). 

(1.23) 

(1.24) 
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RbumB-On fait une ttude thkorique de la variation, en regime transitoire, de la temperature de i’air 
g l’int&ieur d’une enceinte B laquelle on fournit un flux de chaleur constant, la tempkrature exttrieure 
subissant une variation discontinue. Dans un petit nombre de cas particuliers on a cornpar& par le 
calcul l’effet de la ventilation, du stockage intCrieur de la chaleur, des propriCtCs thermiques des 
parois de l’enceinte sur le taux de variation de la tempkrature intbieure. On montre que, dans 
certaines conditions, le rapport (chaleur stock&e/taux de chaleur perdu par l’enceinte) est, en rtgime 

permanent, le parambtre qui d&ermine la variation de la tempkrature intkrieure. 

Zusammenfassung-Die kurzzeitigen VerHnderungen der Lufttemperatur in einem Hohlraum, rn 
dem gleichmlssig W&me erzeugt wird, dessen Umgebung aber einem schrittweisen Temperaturwechsel 
unterliegt, wurden theoretisch untersucht. Die Einfliisse der Ventilation, der inneren W%rmespeiche- 
rung und der thermischen Eigenschaften der Hohlraumw&nde auf die TemperaturPnderung im 
Hohlraum liessen sich durch numerische Berechnungen an Hand ausgewahlter Biespiele bestimmen. 
Unter gewissen Bedingungen stellt das Verhlltnis (gespeicherte WBrme/zeitlich abgegebene Wlrme) 

im stationlren Fall den bestimmenden Parameter fiir die Anderung der Innentemperatur dar. 

AHIloTa~sr-‘reopeTnyec~l1 mcne;loeaH HecTaqaoIIapKbIii TeMnepaTypHbIn Irpoqec~ I< 
rtaMepecpaBKoMepHbIMpacnpe~e~eHlze~~TenJra,nocTynaIo~eronHeBnyTe~ crfaYIioOGpa3kIorO 

I43MeHHH BHemHeti TeMIIepaTypbI. ~JIRHeKOTOpbIl? OTAeJIbHbIX CJIyYaeB C I~OMOubto YllCJlf?H- 
11oro pacYeTa BbEIBJIRIOTCJI 3aBHCI4MOCTII oxaaxcnemvI, BIIyTpeHHer0 aanaca TenJIa II THPME 
YeCKHXCBOtiCTB CTeHOK KaMepbIOTCKOpOCTHI4R;MeHDHHHyTpeHHe~ TeMIIepaTyphI.~OKa3aHO, 
YTO B OnpeHeJIeHHbIX YCJIOBAJIX OTHOIIIeHBe (HaKOIIJIeHHOI'O TeIIZIa K TeZIy, Tel"ieMO~~~ IF;,- 
>IepOt) B yCTEIIIOBHBmeMCH COCTOFIHHH IIpeACTaBJIJIeT co608 IIapaMeTp, KOTOPbIR OIIpei[eJIJfel 


